Adiabatic Quantum State Generation

نویسندگان

  • Dorit Aharonov
  • Amnon Ta-Shma
چکیده

The design of new quantum algorithms has proven to be an extremely difficult task. This paper considers a different approach to this task by studying the problem of quantum state generation. We motivate this problem by showing that the entire class of statistical zero knowledge, which contains natural candidates for efficient quantum algorithms such as graph isomorphism and lattice problems, can be reduced to the problem of quantum state generation. To study quantum state generation, we define a paradigm which we call adiabatic state generation (ASG) and which is based on adiabatic quantum computation. The ASG paradigm is not meant to replace the standard quantum circuit model or to improve on it in terms of computational complexity. Rather, our goal is to provide a natural theoretical framework, in which quantum state generation algorithms could be designed. The new paradigm seems interesting due to its intriguing links to a variety of different areas: the analysis of spectral gaps and ground-states of Hamiltonians in physics, rapidly mixing Markov chains, adiabatic computation, and approximate counting. To initiate the study of ASG, we prove several general lemmas that can serve as tools when using this paradigm. We demonstrate the application of the paradigm by using it to turn a variety of (classical) approximate counting algorithms into efficient quantum state generators of nontrivial quantum states, including, for example, the uniform superposition over all perfect matchings in a bipartite graph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states

We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the ...

متن کامل

A Correlation for the Prediction of the Adiabatic Joule-Thomson Coefficient of Pure Gases and Gas Mixtures

A correlation based on the general form of cubic equations of state has been derived. This equation provides a convenient mathematical form of the Joule-Thomson coefficient in terms of the state variable V and T. The Joule-Thomson coefficient calculated by this correlation has been compared with experimental data. It has been shown that the Redilich-Kwang equation of state is a suitable equ...

متن کامل

Influence of Virtual Photon Process on the Generation of Squeezed Light from Atoms in an Optical Cavity

We show that a collection of two-level atoms in an optical cavity beyond the rotating wave approximation and in the dispersive-adiabatic and non-dispersive adiabatic regime constitutes a nonlinear medium and is capable of generating squeezed state of light. It is found that squeezing produced in the non-dispersive adiabatic regime is significantly high compared to that produced in the dispersiv...

متن کامل

Generation of three-qubit Greenberger–Horne–Zeilinger state of superconducting qubits via transitionless quantum driving

We present an efficient scheme to quickly generate three-qubit Greenberger–Horne–Zeilinger (GHZ) states by using three superconducting qubits (SQs) separated by two coplanar waveguide resonators (CPWRs) capacitively. The scheme is based on quantum Zeno dynamics and the approach of transitionless quantum driving to construct shortcuts to adiabatic passage. In order to highlight the advantages, w...

متن کامل

Validity of Quantum Adiabatic Theorem

The consistency of quantum adiabatic theorem has been doubted recently. It is shown in the present paper, that the difference between the adiabatic solution and the exact solution to the Schrödinger equation with a slowly changing driving Hamiltonian is small; while the difference between their time derivatives is not small. This explains why substituting the adiabatic solution back into Schröd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Comput.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2007